3x(x-5)=-5(x+1)

Simple and best practice solution for 3x(x-5)=-5(x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-5)=-5(x+1) equation:



3x(x-5)=-5(x+1)
We move all terms to the left:
3x(x-5)-(-5(x+1))=0
We multiply parentheses
3x^2-15x-(-5(x+1))=0
We calculate terms in parentheses: -(-5(x+1)), so:
-5(x+1)
We multiply parentheses
-5x-5
Back to the equation:
-(-5x-5)
We get rid of parentheses
3x^2-15x+5x+5=0
We add all the numbers together, and all the variables
3x^2-10x+5=0
a = 3; b = -10; c = +5;
Δ = b2-4ac
Δ = -102-4·3·5
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{10}}{2*3}=\frac{10-2\sqrt{10}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{10}}{2*3}=\frac{10+2\sqrt{10}}{6} $

See similar equations:

| x+x+(x+10)=100 | | 3m=30= | | 3×z+11=41 | | 11x+18=10x-6 | | -4|w+2|=-40 | | 6+1/2x^2-50=11 | | 5−3b=14 | | 2y+y=33-0 | | 44=6a-10 | | .(15-d)/12=37.5/75 | | 4r=29=17 | | (+7)x(-5)=(-35) | | 4(15a+8)=9a–19 | | –3y=6−2y | | Y=50/x | | 241/4-x=131/16 | | 2+2x=−4x+10+x22+2x=-4x+10+x2 | | ​3(c+4)=3c+4 | | 2+2x=-4x+10+x^2 | | -(t-8)+6=-(10+t) | | 6x+3(x+1)=-2+8x | | 3x+2x^2-9=-x^2+2x | | √2x^2=0 | | 3x+2x2−9=−x2+2x3x+2x2-9=-x2+2x | | -46+70n=10(7n-5)+4 | | 5x+44=2x+122 | | 90=-10(8f-9)+80f | | 4(g-1)=24 | | 9(-5a+8)=75-45a | | 4m7=154m+7+4=15+4 | | 6=-10-5+10b | | P(x)=-7x-1 |

Equations solver categories