3x(x-7)=(x+5)(x-3)

Simple and best practice solution for 3x(x-7)=(x+5)(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x(x-7)=(x+5)(x-3) equation:



3x(x-7)=(x+5)(x-3)
We move all terms to the left:
3x(x-7)-((x+5)(x-3))=0
We multiply parentheses
3x^2-21x-((x+5)(x-3))=0
We multiply parentheses ..
3x^2-((+x^2-3x+5x-15))-21x=0
We calculate terms in parentheses: -((+x^2-3x+5x-15)), so:
(+x^2-3x+5x-15)
We get rid of parentheses
x^2-3x+5x-15
We add all the numbers together, and all the variables
x^2+2x-15
Back to the equation:
-(x^2+2x-15)
We add all the numbers together, and all the variables
3x^2-21x-(x^2+2x-15)=0
We get rid of parentheses
3x^2-x^2-21x-2x+15=0
We add all the numbers together, and all the variables
2x^2-23x+15=0
a = 2; b = -23; c = +15;
Δ = b2-4ac
Δ = -232-4·2·15
Δ = 409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-\sqrt{409}}{2*2}=\frac{23-\sqrt{409}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+\sqrt{409}}{2*2}=\frac{23+\sqrt{409}}{4} $

See similar equations:

| 2y^2-16y+79=0 | | 2k+k+(k-20)=180 | | (2x-1)*x=127 | | 1/2*4x*5x=40 | | 45=1/2h(5+10) | | 6x(x+3)=x^2+5x | | 12^(-4y)=8 | | 11r+15=2r2 | | (x-1)^2/3=8 | | 5x^2-4x+2-13/11(4x^2-2x-1)=0 | | (x-5)^2=3x(x+3) | | H2+6h=16 | | -2(y+9)=4y-12 | | -60=10y | | 6(n)=n | | n-27=-49 | | 3w-17=7(w-7) | | 5p+2÷3=4 | | -5y-14=3y+10 | | 5p+2/3=4 | | 12x+50=110 | | 9(x-6)=-5+30 | | 8n-32=3n+18 | | 2x+x+28=-3 | | 9(x-3)=7x-9 | | 81x=2,106 | | 2k+6=24-4K | | X²+12x-189=0 | | -8y+34=-5(y-5) | | F(2)=-2x+6x-3 | | 12=-2x28 | | 6y-18=3 |

Equations solver categories