3x*1,5x=2x*x+20

Simple and best practice solution for 3x*1,5x=2x*x+20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x*1,5x=2x*x+20 equation:



3x*1.5x=2x*x+20
We move all terms to the left:
3x*1.5x-(2x*x+20)=0
Wy multiply elements
3x^2-(2x*x+20)=0
We get rid of parentheses
3x^2-2x*x-20=0
Wy multiply elements
3x^2-2x^2-20=0
We add all the numbers together, and all the variables
x^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $

See similar equations:

| 2m+4÷3+m-2÷2=12 | | 2m+8/6=m-6/6 | | 2-4x=3x+16 | | 8x+11=1-6x | | 30=2(y-3)-8y | | 8x+1=1-6x | | 7x-4=4x+16 | | 5x+9=3+3x | | 9+3b=13+b | | 6h+5=3h+17 | | 3p-5=-25 | | 2×x+3=17 | | 2p-3=-25 | | 4/3(x-3(1-x+1/3(x-5/2)-2(2x+1/2)))=21x+10/3 | | 2/5b-3=-7 | | 3d+6=d+14 | | 5t-2(3t-1)=1/2 | | X(2x)+36x=350 | | 3x/6=0 | | 5b+3=3b+7 | | 2y+1=4.5 | | 12x=-32+8 | | 2p+6=5p-3 | | |11y-12|=23 | | 913a=11/7 | | 2(3w+2)=46 | | 3(3w-6)=17 | | 5x^2-12x-43=0 | | 8/x=21/56 | | 45.7=x/12.7 | | 7.89=67/x | | 45.7=x÷12.7 |

Equations solver categories