If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+(1/2)x+x=120
We move all terms to the left:
3x+(1/2)x+x-(120)=0
Domain of the equation: 2)x!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
3x+(+1/2)x+x-120=0
We add all the numbers together, and all the variables
4x+(+1/2)x-120=0
We multiply parentheses
x^2+4x-120=0
a = 1; b = 4; c = -120;
Δ = b2-4ac
Δ = 42-4·1·(-120)
Δ = 496
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{496}=\sqrt{16*31}=\sqrt{16}*\sqrt{31}=4\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{31}}{2*1}=\frac{-4-4\sqrt{31}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{31}}{2*1}=\frac{-4+4\sqrt{31}}{2} $
| x=(10-2x)(10-2x)(10-2x) | | 64^x+2^x+6=2^x+7 | | 3(7x+5)=78 | | 6x+3x−7=29x | | 50+(10x2)+7=x | | 50+(10x0)+7=x | | 14p+13=12 | | 2x^2+x=1/4x+1 | | 5*5^x=25 | | -5-2(-2q-2)=10 | | 5x5^x=25 | | 3^3x+1=9^x-1 | | 1.2(1.2x-432)-432=432 | | -16h+19=20-13h+6 | | (1/(200x))+x=1 | | (1/(200x)+x=1 | | 200x+(1/x)=1 | | (1/x)+x=0.005 | | 2n−2(4n+5)=−6(n−3)−8 | | x+0.0825x=541.25 | | 15+m/12=21 | | X^2/x-5=25/x-5 | | 1.5a=12 | | 0.5=0.2888x+0.269 | | 160x+32x^2-192=0 | | 14y′+y′′+50y=0 | | 9y′+y′′+14y=0 | | 200=40-1y | | d/14.1-6.7=-18.2 | | |2r+3|=-3 | | 7w+14-3w=92+4w | | w/3.6=8.4 |