3x+(1/3x)+25=100

Simple and best practice solution for 3x+(1/3x)+25=100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+(1/3x)+25=100 equation:



3x+(1/3x)+25=100
We move all terms to the left:
3x+(1/3x)+25-(100)=0
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3x+(+1/3x)+25-100=0
We add all the numbers together, and all the variables
3x+(+1/3x)-75=0
We get rid of parentheses
3x+1/3x-75=0
We multiply all the terms by the denominator
3x*3x-75*3x+1=0
Wy multiply elements
9x^2-225x+1=0
a = 9; b = -225; c = +1;
Δ = b2-4ac
Δ = -2252-4·9·1
Δ = 50589
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{50589}=\sqrt{9*5621}=\sqrt{9}*\sqrt{5621}=3\sqrt{5621}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-225)-3\sqrt{5621}}{2*9}=\frac{225-3\sqrt{5621}}{18} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-225)+3\sqrt{5621}}{2*9}=\frac{225+3\sqrt{5621}}{18} $

See similar equations:

| 2(x+6)=4x-2 | | 4c+9=5c=18 | | 3x+1/3x+25=100 | | x÷3+2x+18=20 | | 6(a-3)=5a | | 2/k=3/4 | | 8-3(c-2)=-13 | | 4x^2+80x-14000=0 | | 10x=2x+5 | | 6(2x-4)=5(3x-6) | | 2q2-24q-48=0 | | x/4-x/5=32 | | 6/24=9/y | | 6/y=9/24= | | 6/f-2=2 | | 5y-2+y-6=9y | | 6^-0.3x=60 | | 7.5+4x=13 | | 12x-5(x+4)=120 | | 15t+5=-20 | | 7x+4=25x+2 | | −40=  24+8s24+8s | | (6x+5​)=+(-7x+9​) | | 9x=2+3 | | 3x^2+6x+5=50 | | 5*5x+1,2=-1-6x | | 6x=196 | | 2(3x-1)=4x-1,5 | | (x-5)➗5=(x+2)➗10 | | (x-5)/5=(x+2)/10 | | X+3(5x-3)=0 | | -12+2n=12n+8 |

Equations solver categories