3x+1/12x+x=180

Simple and best practice solution for 3x+1/12x+x=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+1/12x+x=180 equation:



3x+1/12x+x=180
We move all terms to the left:
3x+1/12x+x-(180)=0
Domain of the equation: 12x!=0
x!=0/12
x!=0
x∈R
We add all the numbers together, and all the variables
4x+1/12x-180=0
We multiply all the terms by the denominator
4x*12x-180*12x+1=0
Wy multiply elements
48x^2-2160x+1=0
a = 48; b = -2160; c = +1;
Δ = b2-4ac
Δ = -21602-4·48·1
Δ = 4665408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4665408}=\sqrt{141376*33}=\sqrt{141376}*\sqrt{33}=376\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2160)-376\sqrt{33}}{2*48}=\frac{2160-376\sqrt{33}}{96} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2160)+376\sqrt{33}}{2*48}=\frac{2160+376\sqrt{33}}{96} $

See similar equations:

| 5^2x=110 | | 600=5/9x | | 3(x+3)+x+3=44 | | -(x+7)-(2-x)=3(x+5)-5(4-x) | | ((x^2)-25)*(3x+1)=0 | | m^2(8m-23)=3m | | 7x+-99=2x+1 | | 3x^2+23x-720=0 | | z^2/6-z/2-84=0 | | x^2-x=x(5+x) | | -13-3r=r+3 | | -2=x^2-8 | | 4x^2+14x-728=0 | | 5x-(3x+6-20+8x+6)=20 | | 4×+5=12x | | 10x^2+5x-15=30 | | 9x^2+9x-720=0 | | 1/8=17/20÷x | | 10x^2+5x=45 | | −3x2−5x−8=0 | | x-4)(x-18)=x(x-14) | | 5/5x+4=5/34 | | b/5-7=11 | | 5x+9=2x-188 | | g=54g= | | 10+y+12(5)-10=180 | | (2+y)/4(2+)=(-2+1/y) | | 12x-10=3x+35 | | 0.8=y/5.2 | | 7x-7=14,x= | | 19d+8=-5d+80 | | 4x=13=5x-12 |

Equations solver categories