If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+12-x=61/2x+1+x+1
We move all terms to the left:
3x+12-x-(61/2x+1+x+1)=0
Domain of the equation: 2x+1+x+1)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
2x+x+1)!=-1
x∈R
3x-x-(x+61/2x+2)+12=0
We add all the numbers together, and all the variables
2x-(x+61/2x+2)+12=0
We get rid of parentheses
2x-x-61/2x-2+12=0
We multiply all the terms by the denominator
2x*2x-x*2x-2*2x+12*2x-61=0
Wy multiply elements
4x^2-2x^2-4x+24x-61=0
We add all the numbers together, and all the variables
2x^2+20x-61=0
a = 2; b = 20; c = -61;
Δ = b2-4ac
Δ = 202-4·2·(-61)
Δ = 888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{888}=\sqrt{4*222}=\sqrt{4}*\sqrt{222}=2\sqrt{222}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{222}}{2*2}=\frac{-20-2\sqrt{222}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{222}}{2*2}=\frac{-20+2\sqrt{222}}{4} $
| -w+10/3=-4 | | 4|2x+3|=20 | | -5(x-10)+1=7x+11-12x | | 10+10b=8b-10 | | 3y+13=118 | | 4x-2=14x-22 | | 2a+33=8a-99 | | 7a=4(2a | | 40=-4(r-11) | | 4=n/5+2 | | -252=12x | | y+28/8=6 | | 4a+13=-23 | | 140=-3-12e | | 3(x-4)-5(x+2)=-2x-12 | | 30=d+9d | | (P-1)=-(-6-4p) | | -7n=6n-3 | | t/5+6=12 | | 4d+13=29 | | -3=u/4-1 | | G(x)=2x/44 | | 4+0.35x=9+.15x | | -6p-1=65 | | 26+b=45 | | 2x+5=6x+14 | | 3(1−2x)=14(6x+9 | | 5z+38=z+46 | | 4x−3=−11 | | -5(3x-19)=2(x-16)-43 | | -5(2x-4)=20 | | -99=9(q-1) |