3x+17+(1/2x)-5=180

Simple and best practice solution for 3x+17+(1/2x)-5=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+17+(1/2x)-5=180 equation:



3x+17+(1/2x)-5=180
We move all terms to the left:
3x+17+(1/2x)-5-(180)=0
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3x+(+1/2x)+17-5-180=0
We add all the numbers together, and all the variables
3x+(+1/2x)-168=0
We get rid of parentheses
3x+1/2x-168=0
We multiply all the terms by the denominator
3x*2x-168*2x+1=0
Wy multiply elements
6x^2-336x+1=0
a = 6; b = -336; c = +1;
Δ = b2-4ac
Δ = -3362-4·6·1
Δ = 112872
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{112872}=\sqrt{4*28218}=\sqrt{4}*\sqrt{28218}=2\sqrt{28218}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-336)-2\sqrt{28218}}{2*6}=\frac{336-2\sqrt{28218}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-336)+2\sqrt{28218}}{2*6}=\frac{336+2\sqrt{28218}}{12} $

See similar equations:

| 4/9y–6=21 | | 8x–(5x+9)=3x–5x–(x+3) | | 7h−5h=8 | | w+18=11 | | 9p-6=-24 | | 3+|2x+2|=15 | | -3/4+x=-7/8 | | 8(3x-1/4)=2(9-7x) | | 30=-3x-3 | | 0.6x=5.52 | | 10/x=2.5/6 | | |3x-12|=39 | | 3(x-4)=44-5x | | 12-3(2w+1)=7w-3(7w) | | 4x^2+3=3x-9 | | $4x^2+3=3x-9$ | | 4.5x(8-x)+36=102–2.5(3x+24)    | | (2g-6/5)=-4 | | 2(2x+7)-5x=14-x | | 9m-4m-2m+8=20-3 | | 8x-1=4x-(9-3x) | | -10x=2(9-2x) | | X+7-3x=-6+3x | | -4=x-21 | | x-437.13=83.82 | | 62.8=6.28r | | x-$437.13=$83.82 | | (6n+15)-12=-3 | | 3(5x-4)=5(3x-5) | | 4/11=-29/x | | 3(5x-4)=4(3x-5) | | -2=b-12/2 |

Equations solver categories