3x+2-x=-2/3x+26

Simple and best practice solution for 3x+2-x=-2/3x+26 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+2-x=-2/3x+26 equation:



3x+2-x=-2/3x+26
We move all terms to the left:
3x+2-x-(-2/3x+26)=0
Domain of the equation: 3x+26)!=0
x∈R
We add all the numbers together, and all the variables
2x-(-2/3x+26)+2=0
We get rid of parentheses
2x+2/3x-26+2=0
We multiply all the terms by the denominator
2x*3x-26*3x+2*3x+2=0
Wy multiply elements
6x^2-78x+6x+2=0
We add all the numbers together, and all the variables
6x^2-72x+2=0
a = 6; b = -72; c = +2;
Δ = b2-4ac
Δ = -722-4·6·2
Δ = 5136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5136}=\sqrt{16*321}=\sqrt{16}*\sqrt{321}=4\sqrt{321}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-4\sqrt{321}}{2*6}=\frac{72-4\sqrt{321}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+4\sqrt{321}}{2*6}=\frac{72+4\sqrt{321}}{12} $

See similar equations:

| .5(6x-8)=x+4 | | 2x^2+4=20+x^2 | | 231=142-w | | 90=−6d+6 | | 3+x/(-2)=10 | | 3(9a+6)=19 | | 10(y+5)=2y+18 | | 85+y=180 | | 5+–g=9 | | 10(5-n)-1=29-2 | | 2/3x-21=-6 | | 3(x-6)-6(x-3)=x+6-(x-12) | | 19x-16=17x+4 | | 3=s/2+2 | | 2x+7x-2=10 | | (5x-10)=(-2x+18) | | 9-x/5=2 | | 36=-6w+3(w+7) | | -18=-8y+2(y-3) | | x^2+2x-93=0 | | -153w=4w-2w | | x+5+2x-2x-2+90=180 | | 160=8(4x-4) | | 8d+5-3d=8d-4 | | 6x+12=9x+x | | (x+5)^2+2=-38 | | 9+2x=4x+125 | | 3b−5=4 | | 29-9x=14+6x | | 1/2(6x-8)=x+4 | | 2m+13=77 | | 3x+x+5=5x+4 |

Equations solver categories