If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+2x^2=120
We move all terms to the left:
3x+2x^2-(120)=0
a = 2; b = 3; c = -120;
Δ = b2-4ac
Δ = 32-4·2·(-120)
Δ = 969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{969}}{2*2}=\frac{-3-\sqrt{969}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{969}}{2*2}=\frac{-3+\sqrt{969}}{4} $
| b÷3=1.5 | | 8x+3=21-4x | | 19-3x=-8x-11 | | 8(x+1)+1=3x+5(2+x) | | (6x-12)4x=180 | | -4(-5x+2)=-168 | | -8x+18=2X-36 | | -4(-5x+2=-168 | | 3x-1-x+1=3x | | 5-(x-6)=10(x+4) | | 5X+2=3x-28 | | 8x^2-194x+200=0 | | -.9p+3.2=1.7p | | 10-m+m+2m=180 | | 2(-3x-3)=0 | | 0.08(y-5)+0.12y=0.18y-0.3 | | b+9=-28 | | 5/9n-3/4=7/9n | | 25u^2-61u+36=0 | | M-10+2m+m=180 | | 19x-2=10x-47 | | (6x+2)-(4x+1)= | | -6(4+4x)=-48 | | 51/2-y=9/4 | | 7/6x+4/3=-1/3 | | 8-3t-6=9t+22-2t | | -10z-0.3=-20z+1.3 | | 6(-7x+9)=-366 | | 17(t-3)+4t=7(3t+2)-10 | | 10k^2+31k+15=0 | | 10(y-3)+2y=54 | | 6x+30=8x+38 |