If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x-(2x-1)=7x(3-5x)+(3-5x)+(-x+24)
We move all terms to the left:
3x-(2x-1)-(7x(3-5x)+(3-5x)+(-x+24))=0
We add all the numbers together, and all the variables
3x-(2x-1)-(7x(-5x+3)+(-5x+3)+(-1x+24))=0
We get rid of parentheses
3x-2x-(7x(-5x+3)+(-5x+3)+(-1x+24))+1=0
We calculate terms in parentheses: -(7x(-5x+3)+(-5x+3)+(-1x+24)), so:We add all the numbers together, and all the variables
7x(-5x+3)+(-5x+3)+(-1x+24)
We multiply parentheses
-35x^2+21x+(-5x+3)+(-1x+24)
We get rid of parentheses
-35x^2+21x-5x-1x+3+24
We add all the numbers together, and all the variables
-35x^2+15x+27
Back to the equation:
-(-35x^2+15x+27)
-(-35x^2+15x+27)+x+1=0
We get rid of parentheses
35x^2-15x+x-27+1=0
We add all the numbers together, and all the variables
35x^2-14x-26=0
a = 35; b = -14; c = -26;
Δ = b2-4ac
Δ = -142-4·35·(-26)
Δ = 3836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3836}=\sqrt{4*959}=\sqrt{4}*\sqrt{959}=2\sqrt{959}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{959}}{2*35}=\frac{14-2\sqrt{959}}{70} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{959}}{2*35}=\frac{14+2\sqrt{959}}{70} $
| 12(x+20)=1955 | | (y^2)(y+2)=0 | | 12+x/4+2=10 | | 6n-4n+25=13 | | -2.6w+87.5=44.1 | | m+5/8=3 | | -2.6w+87.5=44.2 | | 6y+5=5y–5 | | 2q-1/6=6-1/6 | | 8y-4+7y=5(3y-14)-16 | | 8m+10=10 | | 2x+60=2x-180 | | 188=4x+2 | | -2(5x+4)/3=(-3x+2)-7/3 | | 11x-6=6x+7 | | 480=4x*3x | | 35(p+20)=1750 | | ×+72+(x+2)°=180 | | 2x+10+x+x-4=180 | | 5(x+17)=835 | | 6n-4+11=3 | | 1/2x=11/2 | | 7497x-3528=63(119x-56) | | r-37/5=8 | | 7497x-3528=63(119x-56 | | X+10=3x=2x=x | | 4(v+3)=28 | | 2/9d-1/7=1/3 | | T=37n | | 10/8=n-2/n+3 | | 25+8x=33 | | 3.2=-8n |