If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x-10=1/2*4x-10
We move all terms to the left:
3x-10-(1/2*4x-10)=0
Domain of the equation: 2*4x-10)!=0We get rid of parentheses
x∈R
3x-1/2*4x+10-10=0
We multiply all the terms by the denominator
3x*2*4x+10*2*4x-10*2*4x-1=0
Wy multiply elements
24x^2*4+80x*4-80x*4-1=0
Wy multiply elements
96x^2+320x-320x-1=0
We add all the numbers together, and all the variables
96x^2-1=0
a = 96; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·96·(-1)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*96}=\frac{0-8\sqrt{6}}{192} =-\frac{8\sqrt{6}}{192} =-\frac{\sqrt{6}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*96}=\frac{0+8\sqrt{6}}{192} =\frac{8\sqrt{6}}{192} =\frac{\sqrt{6}}{24} $
| 4x^2=-8x-5 | | x^2+11x-60=0 | | -r/10=5 | | x÷28=100÷8 | | x+x+8+2x=26 | | 1-6q+1-3q=2-4q+1-8q | | 1.5(7x+4)=7-1.5x | | 28÷x=8÷100 | | 180-5x+62=180-3x+47 | | 2x+10=12x+70 | | L(x)=10x+125 | | {x}{4}-3=-4 | | A=4b-7 | | 30=v+21 | | x+2=2*(x+1) | | Y=0.5x+22 | | 90=3x+6+2x+4 | | 2x+5=x–7 | | 5x+85.6=180 | | 3(x+2)=(2x+1) | | 2-3(m+6)=-1-2 | | h(1)=6h(4)=-3 | | 5x-6=4x–4 | | –v3–8=–11 | | 1/4x4x=120x1/4 | | y^2-6y+9=9 | | 0.25/1=0.05/xx= | | 7u+12=–65 | | 14+3x=16.1 | | 15=39-6p | | 270=30m-m/0.005 | | 4.8/3=20/xx= |