3x-10x+5=5x(x+3)+2

Simple and best practice solution for 3x-10x+5=5x(x+3)+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x-10x+5=5x(x+3)+2 equation:



3x-10x+5=5x(x+3)+2
We move all terms to the left:
3x-10x+5-(5x(x+3)+2)=0
We add all the numbers together, and all the variables
-7x-(5x(x+3)+2)+5=0
We calculate terms in parentheses: -(5x(x+3)+2), so:
5x(x+3)+2
We multiply parentheses
5x^2+15x+2
Back to the equation:
-(5x^2+15x+2)
We get rid of parentheses
-5x^2-7x-15x-2+5=0
We add all the numbers together, and all the variables
-5x^2-22x+3=0
a = -5; b = -22; c = +3;
Δ = b2-4ac
Δ = -222-4·(-5)·3
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-4\sqrt{34}}{2*-5}=\frac{22-4\sqrt{34}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+4\sqrt{34}}{2*-5}=\frac{22+4\sqrt{34}}{-10} $

See similar equations:

| 4x*8=20-4 | | 3(w-58)=39 | | -3(1+6x)=-14-x | | 4(8z-3)=20 | | 4(u+7)-8u=20 | | 7+3x=4x+1+41 | | 3.1g+7=1.1g+15 | | H=190-0.9h | | 10-3x=2x–5 | | 4e-4=e+5 | | (1)(7)x-6=(3)(7)x+4 | | -8v+7=3-7v | | N(2n+10n)=110 | | 4(4x+8)^2+8=12 | | Y=x²-4x+12 | | 50+(3x-15)=180 | | 8.14+3x=8x-3(x-4) | | 3x+4(x-1)=2x+6 | | 2(3x+6=3(2x-6 | | 1/3(-6)+4x=9x1/2(4x+12)- | | 10(-3y)=2y–5 | | -4x-5x=-9x | | (12x+2)+(13x+19)+121=180 | | 4.9g+9=2.9g+17 | | (x-6)=(3x+2)=180 | | 5.50x+34.60=64.60+4.25x | | h-51/7=4 | | 15-4(x+13)=19 | | a-14=-1 | | 132x=(24+28)5 | | 10-3y=2y–5 | | 17x6=37x+4 |

Equations solver categories