If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x-3=(3/4)(2x+12)
We move all terms to the left:
3x-3-((3/4)(2x+12))=0
Domain of the equation: 4)(2x+12))!=0We add all the numbers together, and all the variables
x∈R
3x-((+3/4)(2x+12))-3=0
We multiply parentheses ..
-((+6x^2+3/4*12))+3x-3=0
We multiply all the terms by the denominator
-((+6x^2+3+3x*4*12))-3*4*12))=0
We calculate terms in parentheses: -((+6x^2+3+3x*4*12)), so:We add all the numbers together, and all the variables
(+6x^2+3+3x*4*12)
We get rid of parentheses
6x^2+3x*4*12+3
Wy multiply elements
6x^2+144x*1+3
Wy multiply elements
6x^2+144x+3
Back to the equation:
-(6x^2+144x+3)
-(6x^2+144x+3)=0
We get rid of parentheses
-6x^2-144x-3=0
a = -6; b = -144; c = -3;
Δ = b2-4ac
Δ = -1442-4·(-6)·(-3)
Δ = 20664
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20664}=\sqrt{36*574}=\sqrt{36}*\sqrt{574}=6\sqrt{574}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-144)-6\sqrt{574}}{2*-6}=\frac{144-6\sqrt{574}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-144)+6\sqrt{574}}{2*-6}=\frac{144+6\sqrt{574}}{-12} $
| 13s−9s+4s−5s=18 | | 69x+236=672 | | 4x+5x=8x+10x | | 11x21=720 | | 0.1x+x=150000 | | 3.7x=-4.44 | | 69x+672=236 | | x-0.2=-0.3x+18 | | 10(2.1x)=31+4x | | 2z^2+31z-16=0 | | -3(-2x)=5 | | 47w=24 | | 7/3x+1/3x=4+5/3 | | 4x-2=8+3 | | 24x+60=540 | | 236x+672=69 | | -6x+8=-3x−10 | | --5y=65 | | 63+5w=12w | | 4x+-2=8+3 | | x+2x+(x-40)=180 | | 15x+22x+129=180 | | -2/3(1/6x+12)=-9 | | x*2+45=180 | | (11x+7)+96=180 | | 8x+2=6x+4= | | 6x+36=4-5 | | 5x+3=(-x-2)2 | | x2+8/3x=20/9 | | 8x−9=7x+9 | | 10(2.1x)=31+4 | | 17m^2+19m+2=0 |