3x-5=1/5x+23

Simple and best practice solution for 3x-5=1/5x+23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x-5=1/5x+23 equation:



3x-5=1/5x+23
We move all terms to the left:
3x-5-(1/5x+23)=0
Domain of the equation: 5x+23)!=0
x∈R
We get rid of parentheses
3x-1/5x-23-5=0
We multiply all the terms by the denominator
3x*5x-23*5x-5*5x-1=0
Wy multiply elements
15x^2-115x-25x-1=0
We add all the numbers together, and all the variables
15x^2-140x-1=0
a = 15; b = -140; c = -1;
Δ = b2-4ac
Δ = -1402-4·15·(-1)
Δ = 19660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19660}=\sqrt{4*4915}=\sqrt{4}*\sqrt{4915}=2\sqrt{4915}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-140)-2\sqrt{4915}}{2*15}=\frac{140-2\sqrt{4915}}{30} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-140)+2\sqrt{4915}}{2*15}=\frac{140+2\sqrt{4915}}{30} $

See similar equations:

| -4K+8=2k-37 | | -2x+8=15-5x | | 2+3x+2/7x=-21 | | -2x+18=15-5x | | 4(5x)=10+2x | | 24+3x=3×+3(7-1) | | j+3.34=8 | | 3|x-5|=27 | | (6+5i)/(3-2i)=0 | | 9x+32=48 | | x^2+(41-41/23x)^2=34^2 | | |3x+2|=-1 | | (1-x)(2-x)(115)=(2x)^2 | | 48x+54=0 | | -9.1=2.1+v/7 | | -5x+10=-x+38 | | 20−3q=11 | | 2(x+5)+2x=2(2x+2) | | Y=48x+54 | | s+45=63 | | r+36=51 | | j/7-11=5 | | b/5-11=4 | | 7-7x=-5x-29 | | 27+q=34 | | 0=50-(0.7•d) | | 16=v/11 | | 11/4=d/48 | | 4/5•n=18 | | 7x-8=5x=180 | | 6x-2x+11=27 | | X+7+12x-27=123 |

Equations solver categories