3x-8=10-3(x-4)x

Simple and best practice solution for 3x-8=10-3(x-4)x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x-8=10-3(x-4)x equation:



3x-8=10-3(x-4)x
We move all terms to the left:
3x-8-(10-3(x-4)x)=0
We calculate terms in parentheses: -(10-3(x-4)x), so:
10-3(x-4)x
determiningTheFunctionDomain -3(x-4)x+10
We multiply parentheses
-3x^2+12x+10
Back to the equation:
-(-3x^2+12x+10)
We get rid of parentheses
3x^2-12x+3x-10-8=0
We add all the numbers together, and all the variables
3x^2-9x-18=0
a = 3; b = -9; c = -18;
Δ = b2-4ac
Δ = -92-4·3·(-18)
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{33}}{2*3}=\frac{9-3\sqrt{33}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{33}}{2*3}=\frac{9+3\sqrt{33}}{6} $

See similar equations:

| 140x+10x=80x+20x | | -8+2(2x-3)=2 | | -20+v=9 | | 4x+50=3x+4 | | h+7=(2+7) | | y-742=-635 | | 18(5x+10)=675 | | 180=11x-5 | | 50x-50=200 | | 6/9x=6 | | -(x+5)+2x=12 | | 10=-2/3b | | 25k=100 | | 5=-5x-25 | | 40r=67=71 | | s-21/7=6 | | 7x+1x=56 | | 9x-1-4(3x-1)=0 | | s+367=559 | | 5x-162;x=16 | | 929=n+663 | | -10n=3/5n-8 | | 4(2x+1)+4x=4 | | -16+m=-6 | | 9h−4h=10 | | -10088(5x-6)=368 | | m/18=6 | | 1=10=3k | | t-2=-10-t | | v/3-11=16 | | y4−2=4 | | (2x+3)(3x+2)=6x2+19 |

Equations solver categories