If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x-9(3x-9)=(2x+2)(2x+2+25)
We move all terms to the left:
3x-9(3x-9)-((2x+2)(2x+2+25))=0
We add all the numbers together, and all the variables
3x-9(3x-9)-((2x+2)(2x+27))=0
We multiply parentheses
3x-27x-((2x+2)(2x+27))+81=0
We multiply parentheses ..
-((+4x^2+54x+4x+54))+3x-27x+81=0
We calculate terms in parentheses: -((+4x^2+54x+4x+54)), so:We add all the numbers together, and all the variables
(+4x^2+54x+4x+54)
We get rid of parentheses
4x^2+54x+4x+54
We add all the numbers together, and all the variables
4x^2+58x+54
Back to the equation:
-(4x^2+58x+54)
-24x-(4x^2+58x+54)+81=0
We get rid of parentheses
-4x^2-24x-58x-54+81=0
We add all the numbers together, and all the variables
-4x^2-82x+27=0
a = -4; b = -82; c = +27;
Δ = b2-4ac
Δ = -822-4·(-4)·27
Δ = 7156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7156}=\sqrt{4*1789}=\sqrt{4}*\sqrt{1789}=2\sqrt{1789}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-82)-2\sqrt{1789}}{2*-4}=\frac{82-2\sqrt{1789}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-82)+2\sqrt{1789}}{2*-4}=\frac{82+2\sqrt{1789}}{-8} $
| 1/4k=8.25 | | -6=y+y+4 | | 9=3x–2 | | (1/4)k=8.25 | | 9k=225 | | 8=2c-7-7c | | 75=(40)t-5t^2 | | -9-3a=24 | | 7x+41=(12×-19)x2 | | 7x+41=(12×-19)2 | | 8z+10=-14 | | 32^3x=64^-3x | | 4x+10=-3x-10 | | x+64=−27 | | 9x+24=-6x-6 | | -8a+3=-8a+9 | | -7a+1=-3a+9 | | 20x3^x=10 | | 14k-2(3k-5)=-62 | | 3(b-1)+2(b+3)=13 | | (4x+19)=(6x+9) | | (12-y)/2y=0 | | 6(4y-3)+2y=34 | | -5(c-2)=15 | | 7(2x-1)-3(4x-1)=5(3x+2)-1 | | x+72÷9=25 | | Y=3x/15 | | 5w-9w+3=-33 | | Y=-6-3x/15 | | 12a+5-8a=13 | | 2/3(x+37)=72 | | 12w-4(6w-2)=-40 |