3x/x+1=3-3/2x+3

Simple and best practice solution for 3x/x+1=3-3/2x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x/x+1=3-3/2x+3 equation:



3x/x+1=3-3/2x+3
We move all terms to the left:
3x/x+1-(3-3/2x+3)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x+3)!=0
x∈R
We add all the numbers together, and all the variables
3x/x-(-3/2x+6)+1=0
We get rid of parentheses
3x/x+3/2x-6+1=0
We calculate fractions
6x^2/2x^2+3x/2x^2-6+1=0
We add all the numbers together, and all the variables
6x^2/2x^2+3x/2x^2-5=0
We multiply all the terms by the denominator
6x^2+3x-5*2x^2=0
Wy multiply elements
6x^2-10x^2+3x=0
We add all the numbers together, and all the variables
-4x^2+3x=0
a = -4; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·(-4)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*-4}=\frac{-6}{-8} =3/4 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*-4}=\frac{0}{-8} =0 $

See similar equations:

| 64=32^x+4 | | H*t=-16t2+32t+21 | | (y/3)^2=16 | | 56=h/4 | | Y=12-3x/x^2-7x+12 | | 6(6x-4)=24 | | x/2=3(x/2) | | 2x/x+1-2/x+3=2 | | 90=35x+5x | | 7/5w=42 | | -3.1x=29.6 | | 7/x-5/3=2/3x | | 1,5x-0,7=0,4(3-5x) | | n/6=n/2-4/3 | | 2x+12=2x-10 | | 5x+3x+2x/5x=5x | | 5x+3x+2x/5x=2x | | 10x/5x=2 | | 8+2^x+1=2^2x | | (12+3x)=5x | | x-7+x-3=x+x+12 | | 36=2(l+11) | | 7/9y=-6 | | 4×2x+8)=3×2x+6 | | 36=2(-x-7)-4(x-5) | | -x/6=2x | | 4/5=p-6 | | (-12+9x)=3(3x-8) | | -16t^2+66t+2=0 | | 12(3x+5)+40=178 | | x+12-6=21-3 | | 5(x+30)+2(x+25)=75x |

Equations solver categories