If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+-5x+-1=0
We add all the numbers together, and all the variables
3x^2-5x=0
a = 3; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·3·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*3}=\frac{0}{6} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*3}=\frac{10}{6} =1+2/3 $
| 2x-11.2=3.8 | | m-15/8=8 | | 3h+1.50=201 | | 2x+4x+5x+15=180 | | 4q+15=71 | | -5k=-4k-5 | | 2+y=100000000000000000000000000000000000000000000 | | 4×(b-8)=52 | | Y+4=(-11/2)(x-4) | | 3h+1.50=301 | | f/9+45=53 | | 5x+2x+3x=350 | | 7z-29=z+31 | | -4(3x-11)=5(-x+2) | | 10^x=151 | | 4b-69=2b+1 | | -7(x-6)-4x-3=3(x+5)-2x | | 3=2k-11 | | m-65/7=4 | | 5v+45=10v+60 | | 19.95+3.95•c=64.40 | | 5(x+3)=(3x-4) | | 2u-68=u | | 3y=2.7 | | -1.15+0.4p=2.9p+6.85+9 | | 0=(p-1)9 | | m^2=105 | | 3a-93=2a-53 | | 9m-16✓m=0 | | 19.95+3.95•c=63.40 | | 6w-78=7w-93 | | x+53+87+51=180 |