If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10x+5=0
a = 3; b = 10; c = +5;
Δ = b2-4ac
Δ = 102-4·3·5
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{10}}{2*3}=\frac{-10-2\sqrt{10}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{10}}{2*3}=\frac{-10+2\sqrt{10}}{6} $
| x-2/2=3 | | 4x^2-65x+11=0 | | 3x+1+29=180 | | 4x²-65x+11=0 | | 6x+2+22=90 | | 2|x+5=6 | | 24+2x=26x | | x/6-x/7=-14 | | 5x·10=50 | | 3r+24/9=3r-6/3 | | 125/27-5(x+3)^2/3=0 | | 23=4(2p−3)+3 | | 20/x=16/5 | | x=0.0088(( | | 2x^2+43x=-40-5x^2 | | 0.16(y-3)+0.12y=0.08y-0.01(40) | | x=0.0088(x+200) | | P(x)=-x-x+12 | | 25x^2-40x-27=0 | | 4(6x+1=24x+4 | | 0.11x+3.97=0.07x+3.85 | | 0.10(y-8)+0.08y=0.16y-0.03(20) | | 5(2l−5)+3l=1 | | .7x-3.5=-1.4 | | ((2x-5)/7)+x=3 | | x+0.13x=400 | | x-0.13x=400 | | 2x+5×=146 | | x+0.83x=400 | | (2x+20)^2=100 | | 10k−10k=0 | | -3v-5=15 |