If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10x-117=0
a = 3; b = 10; c = -117;
Δ = b2-4ac
Δ = 102-4·3·(-117)
Δ = 1504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1504}=\sqrt{16*94}=\sqrt{16}*\sqrt{94}=4\sqrt{94}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4\sqrt{94}}{2*3}=\frac{-10-4\sqrt{94}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4\sqrt{94}}{2*3}=\frac{-10+4\sqrt{94}}{6} $
| 2,3x+1,2x=7 | | -9.5x=0.24=7.36 | | x/0.02=3.1*10^-4 | | 18.8=x | | 4(x+2)=8(x+5) | | 24x^2+54x-120=0 | | |3x+15|=6 | | 2x-13=x+22 | | 4x-24=2x-4 | | 3x-4x+6=2(x+12)+3 | | (2x+1)°=35 | | (2x+1)°=35° | | 3/2(c-1)=1/2(4c) | | -8/5x=48 | | 4+26d=-48 | | 5x-10=4x+25 | | 6.5*10^-5=x^2/(0.100-x)(0.100-x) | | 3(16x+8)+3x=0 | | -25=-3n+5n= | | 27-10x=12x+60 | | X2+8x+3+24=0 | | 9/2x-1/9=7/2x-19/9 | | 74=39(-6n-5) | | 7/x=2.3 | | 3(5x+2)=2(7x+6)-22 | | 12y+14=68=y | | 2(y-3)=-5-(4-5y) | | 0=40-16t^2 | | p=7-1/2 | | 12y+14=68.y= | | 6t-8=2(2t=1) | | 2(y-3)=-5-(4-4y) |