If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10x-25=0
a = 3; b = 10; c = -25;
Δ = b2-4ac
Δ = 102-4·3·(-25)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-20}{2*3}=\frac{-30}{6} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+20}{2*3}=\frac{10}{6} =1+2/3 $
| 9m-8=3m+4 | | (0.04-x)/x=1.99 | | (9+2x)*3=9+3x | | (10x+5)+(5x-5)=180 | | 5y-2y+y-6=9y+10-6y+13 | | M+2-a=9 | | (9+2x)*3=3+9x | | (5x-1)^2=-49 | | 24p^-12p=24p-12p^ | | 2x-17+2x+7+x=180 | | 6x+5=-6x+137 | | 2x-17+2x+7=180 | | 2x-9=x-13 | | 7x−8)+(3x+8)=180 | | -3/2=-9/4x | | 11=-x=29 | | 6x-10=5x+20 | | (1+d)÷5=9 | | 5/6=2/3a | | -5x+2=68+x | | 14w+1=17+13w | | 10f=16f+18 | | 3(m3)-4(m+3)=0 | | 9+6x=x-41 | | 2(3x-7)^2+4=-28 | | 2.05+6.2r=10.06+4.4r-5.31 | | 6z+2z=64 | | 16x-9=3(5x+5)-6 | | -1+10j=12j-19 | | 5(2x+5)=-37+12 | | 19+10n-19=-20+9n | | 16x-9=3(5x+5-6) |