If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10x=-4
We move all terms to the left:
3x^2+10x-(-4)=0
We add all the numbers together, and all the variables
3x^2+10x+4=0
a = 3; b = 10; c = +4;
Δ = b2-4ac
Δ = 102-4·3·4
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{13}}{2*3}=\frac{-10-2\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{13}}{2*3}=\frac{-10+2\sqrt{13}}{6} $
| 180=5(4x+4) | | -4(2x-5)+6=12-8x+7 | | 4p+28=-8+10p | | -11y-16+2y=4-10y | | 59=-9t-4 | | 16u-12-8u=2u-14-8 | | 6+10u+11u=-14+17u | | |4x+12|+11=32 | | 15m+22=-5m+18 | | 1/3y,y=2/7 | | 1−2s=3;s=5 | | 5=x²-4x | | 19+7x=-3(x-7)+8 | | m-13=41.5 | | 2y-3=11y+42 | | 7x+15-9x+10=5 | | 3q-8=2q-1 | | 7x+9(2x-4)=-14 | | 1+r-7r=-7-6r | | -3n-8(7+5n)=288 | | (4y-5)(2y+5)=180 | | (k/2)+9=30 | | 3f+8=7f | | (4y-5)(2y+5)=280 | | x=5/1/4 | | -34-p=-3(3p-5)1 | | 66+6x=33x | | 7x-4-5x=x-4 | | 6v+6-2(-2v-4)=2(v-2) | | w=0.16+10.4 | | C=2ㄫr | | (4y-5)(2y+5)=90 |