If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10x=27
We move all terms to the left:
3x^2+10x-(27)=0
a = 3; b = 10; c = -27;
Δ = b2-4ac
Δ = 102-4·3·(-27)
Δ = 424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{424}=\sqrt{4*106}=\sqrt{4}*\sqrt{106}=2\sqrt{106}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{106}}{2*3}=\frac{-10-2\sqrt{106}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{106}}{2*3}=\frac{-10+2\sqrt{106}}{6} $
| r/60=(40/(50) | | 3x+7=9.25 | | 0=(2-i)(1-6i) | | |y|+(-10)=-12 | | (r)/(60)=(40)/(50) | | 20/10=x/6 | | 7-((x/5)-3)=(-4/9) | | X+x+14=82 | | 0=(-8+8i)(5+7i) | | (x-3)/(x-8)=3 | | 7-(x/5-3)=-4/9 | | 7+19(x-13)=187 | | -5/3=-2/3x | | 8(m-5)=2(3m-8 | | 5*2^3x=21 | | 4/9÷a=12 | | 2x-(1+x)=11 | | 0=(-1-i)-(7-6i) | | 10-3(r+4)=-23 | | 9=18+2p | | 12x-1=12-1 | | 6-1/3x=x-2 | | 6(12x-10)=2(-5x+8)+6 | | .3x+.2x+14=x | | 13/4x+7=5/2x+13 | | -x/7-19=-5 | | 0=(-6+6i)+(7-i) | | 4x+2=-x-38 | | x+2/8-x/12=1/2 | | Y÷5=9÷5y | | 3y-1=-16 | | 7x-6+4x-3=180 |