If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+11x+2=0
a = 3; b = 11; c = +2;
Δ = b2-4ac
Δ = 112-4·3·2
Δ = 97
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-\sqrt{97}}{2*3}=\frac{-11-\sqrt{97}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+\sqrt{97}}{2*3}=\frac{-11+\sqrt{97}}{6} $
| 8x-11=10x+6 | | -k^2+2k-5=-3 | | 4x/7+7=4 | | x/8=70 | | a-5/7=8/16 | | (70000-x)÷5+x÷10=9500 | | 6a+2=72 | | 45=p | | 6y+10=-3y-15 | | x=6*5 | | -11x-16=-15 | | 3z^2+9z+17=0 | | 2x2−(x−4)2=(3+x)2−15 | | (0,32+(7/8)*x)*100=731 | | b*b*b=32768 | | x+7·9=100 | | (2x-3)(7x+5)=0 | | 2x-(4-x)5=1 | | (x+7)•9=100 | | 4*(x*x)-9=0 | | t+3=-3(t-8)-5t | | t+3=3(t-8)-5t | | 100=(x+9) | | 5x−8=3x+14 | | X/2-1=5x/6+10/6 | | 3=(4a+5+9) | | 2*a*a(a+5)-2*(a+5)(a+5)=0 | | 2x=-8+x | | 2(r+8)=2 | | 9m+9=10(m-1) | | 3x–21=15 | | 15+56x=14+57x |