If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+12x+1=0
a = 3; b = 12; c = +1;
Δ = b2-4ac
Δ = 122-4·3·1
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{33}}{2*3}=\frac{-12-2\sqrt{33}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{33}}{2*3}=\frac{-12+2\sqrt{33}}{6} $
| 12x+112=1,000 | | 3x+1+106=180 | | 6t=20-2 | | -2(x-1)=-3x+5 | | (41x•3x-8)-2x=44 | | 3d+3=66 | | 29-x/4=(x+5) | | (41•3x-8)-2x=44 | | x+42=2x+4 | | 7(5a-4)-1=14-8a* | | 3+16x=15x+11 | | x-7/8x=18 | | 3x-9+x=12 | | 21x-33=-21 | | (4/3x-8)-2x=44 | | 7/8x-x=18 | | (-5x+2)+2x+5=-2 | | 3x-24=-3x+28 | | 3x+4=x+I | | 10x-45=5x+80 | | X+2x+X/X+1=2 | | 3x-6x+2=-8x+2+5x | | 6=96/y | | 4b=3b-3 | | 25x=20×2x | | 2-x+3=4 | | 5-13c=4c+39 | | 5-x3x=17 | | 7=+3v-14 | | 17y-47+27=4y-18 | | 2z-5.8=1.2 | | 91=73x+1 |