If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+12x+2=0
a = 3; b = 12; c = +2;
Δ = b2-4ac
Δ = 122-4·3·2
Δ = 120
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{120}=\sqrt{4*30}=\sqrt{4}*\sqrt{30}=2\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{30}}{2*3}=\frac{-12-2\sqrt{30}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{30}}{2*3}=\frac{-12+2\sqrt{30}}{6} $
| 34=2(x-5) | | (4x+6)-(5+3x)=8 | | b/4− 2= 1 | | -6x-5(6x+2)=-10 | | -0,8a-8=0.2a | | b4− 2= 1 | | 5x+12=7x-9 | | .5(.5x-8)-5=4 | | 16+2t=3/2t+9 | | 0.753=4^x | | 4y=7/1 | | 5x+12-2x+6=-15 | | x/2.50=0.10 | | 3-4(x+1)=159 | | 5r=3/4 | | 2(3+y)=18 | | h=1/2(980*20^2) | | B=35.00-0.20x | | 4.9t^2-5t-760=0 | | 6(2x-5=-(2+4) | | 3(x-8)=7x+9 | | -9x+27=18 | | 2(2y/3-2/3)=0 | | 25x3-3x=0 | | 7=11x+19 | | 7p=10=38 | | 6p+8=12+5p | | x-9/4+x+7/3=7/4 | | 7(v-2)-3=-5(-3v+4)-2v | | (-3x-9)(4x+28)=0 | | 3x=24;x | | 4(z+7)-5=8z-5 |