If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+12x+7=0
a = 3; b = 12; c = +7;
Δ = b2-4ac
Δ = 122-4·3·7
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{15}}{2*3}=\frac{-12-2\sqrt{15}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{15}}{2*3}=\frac{-12+2\sqrt{15}}{6} $
| –2t+97=3 | | x^2=0.69 | | 22.44=5g+3.79 | | 2a+11=14a-5 | | m/6-10=-7 | | 6x+1+4x=10x+6 | | 6+6a=-2(5+a) | | 2-5x=-1-7x | | a+2(a-10)=320 | | 15a/4=21/8 | | 7+3n=2-2n | | 1000(6x−10)=40(465+100x) | | 0=2u^2-88 | | x/18-3=-2 | | 5-3(x+1(=5 | | 8-2x-6=15 | | 2(x+1)+3(x+2)=53 | | 3(6j+2)=-2(3j-6) | | -4-12x-9=-9x-6(2-10x) | | 5/6x+1=-1/3x+4/9 | | 15x+3=56 | | -2x=4(3x-2)+1 | | 7x+30+9x+32=180 | | 9=-6x+2×7x | | 100-2y+y=72 | | 10x-32=180 | | 5n=n–8 | | 1-7(-3+5x)=-34-7x | | 2-(3x-11)=41 | | 7(-3x-7=-(5x-2) | | -8+r=-5r+2(4r-7) | | P/p=4 |