If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+12x+8=0
a = 3; b = 12; c = +8;
Δ = b2-4ac
Δ = 122-4·3·8
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{3}}{2*3}=\frac{-12-4\sqrt{3}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{3}}{2*3}=\frac{-12+4\sqrt{3}}{6} $
| 11x2-10x-14=0 | | 3^(5x-2)=27 | | -12(.5)+h=-8.5 | | 4y=3y-15 | | 7+2x=-29 | | -3-x=18 | | -9+x/8=-12 | | 2(x+4)+x+1=3x+9 | | -8x-17=19 | | -124=6+6(7b+7) | | 9x2+15x+16=0 | | 5x2+x+1=0 | | 9x2+5x+10=0 | | 4(-2x-5)=28 | | 3x2-1x+12=0 | | 13x2+x+10=0 | | 3x2+11x+15=0 | | 3x2+11x15=0 | | 20x2-17x-7=0 | | 3x2+13x-4=0 | | 17x2+16x+20=0 | | 15x2+12x-9=0 | | 7x2-12x-14=0 | | 17x2+16+20=0 | | 6x2-19x-18=0 | | 5x2-12x-11=0 | | 18x2-13x+7=0 | | 18x2-13x+17=0 | | 13x2+13x-14=0 | | 20x2+6x-15=0 | | 113.04=(3.14)r(r) | | 20x2-6x+15=0 |