If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+12x=30
We move all terms to the left:
3x^2+12x-(30)=0
a = 3; b = 12; c = -30;
Δ = b2-4ac
Δ = 122-4·3·(-30)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{14}}{2*3}=\frac{-12-6\sqrt{14}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{14}}{2*3}=\frac{-12+6\sqrt{14}}{6} $
| 7+3n-6=-20 | | 4-k/k-8=2/3 | | -4n-7n=22 | | 3n-5-2n=-1 | | 5−4+7x+1=6x+4 | | (×+5)(x-7)=0 | | f+2/15=63/5 | | 5x^2+72=0 | | (7+w)(2w+1)=0 | | 4n-3=-2n+9n=2 | | 1/6(X-6X)=-1/3(6x+1/2) | | 16=8^-x+4 | | (4c+9)(c+8)=0 | | 7(x-6)=-5x-18 | | 1/2y-2=-19 | | 2.50+50n=17.50 | | 6x^2+30x-729=0 | | 250+50n=1750 | | $2.50+50n=17.50 | | -9=3y-3 | | 4b−15−4b=24 | | x/7x+5=16x | | 3v-2=-2 | | 7=3+4v | | 29x-60/2=10(2x+4 | | X(n-6)=42 | | 1/4=5/20=x | | (125-38)/3=x | | (4c+2)+(2c-7)=90 | | 4c+2+2c-7=90 | | (3x)+x=180 | | x/5+18=32 |