If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+13x-10=0
a = 3; b = 13; c = -10;
Δ = b2-4ac
Δ = 132-4·3·(-10)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-17}{2*3}=\frac{-30}{6} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+17}{2*3}=\frac{4}{6} =2/3 $
| 4x/7-2=10 | | -5(2v+4)=170 | | -2(3x-8)=10 | | 3(x+1)=5(x-1)-4 | | -x^2-5;x=-3 | | 2(x+1)=6(x-2) | | 6x-(3x+4)=20 | | 2y-3=12y+17 | | √7x-8=√2x+12 | | 15/1.25=h | | 6x-(2x+13)=16 | | 2x=-10+x | | (-3+7i)(1-6i)=0 | | 9(3y-1)=72 | | 2/(3x+8)=2x+24 | | 18x+75=25x | | -3(7+3k)-(8k+3k)=-17 | | 3x+8=2(2x+24) | | 2x+14-x=7+5-5 | | 12(p-2(1/3))=-8 | | g-17g+7=-9 | | g−17g−-7=-9 | | x/3,8+x=8,5/12 | | 4x-9x+59=2x+38 | | q/(-5)=30 | | 108=4y-2+3y+4y-2+3y | | C(20)=25n+250 | | 5x−(10−3x)+20=58 | | 4(3x-5)-2=4(x-5)+30 | | 2g+2(-8+5g)=1-9 | | (0.8)^2x=0.45 | | -36=6(x-6) |