If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+14x+10=0
a = 3; b = 14; c = +10;
Δ = b2-4ac
Δ = 142-4·3·10
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{19}}{2*3}=\frac{-14-2\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{19}}{2*3}=\frac{-14+2\sqrt{19}}{6} $
| 3x-5+6x=-32 | | -6x+6=x-54 | | 13.16+0.09x=14.36+0.15x | | 60x+160=930 | | 144=x+5-15(x+5) | | 2x+8+6x=0 | | 3x+4=20+4 | | 2(d +1)=5d –7 | | .3x-12=2x-2 | | 3x2+-14x+10=0 | | 41=-17-3t | | -5.6-6x-4.1-2x=-7x-3.3 | | 5b+4=7(b+1)-36 | | x^+49=0 | | -3(2-x)+x=8 | | -2+a=14 | | -64=6a+2(3a+4) | | -4x+6=x-54 | | 1/3x-12=2x-2 | | 11x+8=115 | | 12–2c=4 | | n4-2=2 | | 5-3x+x=-17 | | 3501=3(x+62)+4X+2(2/5X) | | -5x-6=2x-69 | | 3(x-7)-x=2×-21 | | -2.5(4x-4)=-62 | | 2x^+3x+8=0 | | 2(x-3)/5+3=4x | | -8.8-5z-7.7-z=-5z+2.3 | | 26=m/7+21 | | -8-x-6x=-22 |