If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+14x-16=0
a = 3; b = 14; c = -16;
Δ = b2-4ac
Δ = 142-4·3·(-16)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{97}}{2*3}=\frac{-14-2\sqrt{97}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{97}}{2*3}=\frac{-14+2\sqrt{97}}{6} $
| 5x-4/4=4x-1/3 | | 1.3x+4.1=0.8x-0.1 | | 20x+5=20x+1 | | 2+14z=-8=9z | | 3w-17=1 | | 3+y-1=1+3y | | 10x+5=25+30x | | 35/25=n/5 | | y/2-2=8 | | 11x-12=7x+20 | | 9x+3=6x-21 | | 3x-5x+8x+8=42 | | X-2=-4x+3 | | 4(3x-0.2)=0.8-0.1 | | 7(x+2)-x-3=6x+5 | | 0.4x3=-3.2 | | 7.4=-t/7.5 | | 3x-2(x-4)=5x-(2x+1) | | 3x-2(x-4)=5x-2x+1) | | 4=32t/5 | | 2b+3b-6=9 | | 8/k=-12 | | 11^x=33 | | (a+1)(5a-3)=2 | | 19.1+4y=7y+11 | | 1/3(2x+6)=x-4 | | 8=a/1-0.5 | | 12x+1=x | | 4x-10=5x-3 | | (r-1)(2r+1)=2 | | 0.5555555555555x=+6 | | x1/3=4/9 |