If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+14x-5=0
a = 3; b = 14; c = -5;
Δ = b2-4ac
Δ = 142-4·3·(-5)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-16}{2*3}=\frac{-30}{6} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+16}{2*3}=\frac{2}{6} =1/3 $
| -5x=-2= | | 164-m=84 | | (5x+4)^2=96 | | 1/5m=13 | | 7/10+x=67 | | 8r+4=-20-12+11r | | -3x-x=2-7x+2-4 | | 3z-2z=25 | | 28-0.3y=0.y-12 | | 2x+4x-12=6x+15-3 | | 3^x+3^x-1+3^x-2+3^x-3+3^x-4=363 | | M+5÷9=t | | x/2-2/5=1/2 | | P=5,t=-18 | | 4n2-20n+0=0 | | 0=4x^2+39x+33.5 | | -8x-14=32-4x | | -6/5v-4=2/3v-5/3 | | (-9)-(3)=x | | 20+8(q11)=-12 | | 3^(x)+3^(x-1)+3^(x-2)+3^(x-3)+3^(x-4)=363 | | 4z-19=5z | | 45x-21-16x=-225 | | m2-2m+0=0 | | 3=3(b+6) | | 5x÷9=-51 | | (N-6)/3=(n-2)/9 | | .4x+9=25 | | 1/10y-3=-7 | | 14-7c=63 | | 3x-x+4=2x+16 | | 2+-10-3n=24 |