If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+14x=0
a = 3; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·3·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*3}=\frac{-28}{6} =-4+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*3}=\frac{0}{6} =0 $
| -7x=+(-3) | | w•5=4 | | 11x+47=-8 | | 9v-4v=30 | | 3/2=9/10r | | 3.8(2x0.3+3)=2.4(6-0.3) | | -64+4x=50+10x | | -7x+x=(-3) | | 1/2(4x+10)=6x-46 | | w/7=96 | | -2.4=v/8+10.4 | | .8x+30=2.30 | | 1=-10x+11 | | 81x=1215 | | 4x-5+8x=3(6x-4)+4 | | 1/4x+2.6=-19 | | 6x=9-10x | | 32x=x5 | | x/3-10=20.5 | | 22=11m-8-6m | | 2x^2+3x-10=2x+11 | | 2x^2+3x=10=2x+11 | | 4x10^-3x=18 | | 5x+20=10x+60 | | 8{b+1}=-3{2+b} | | x15=2400 | | ∠B=6x+72∘ | | -2(-17q-16)-q=4q+3 | | 45x+4=-15x | | 11x=3850 | | 7/4/x=1/2 | | Y=-13x-5 |