If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+15x-21=0
a = 3; b = 15; c = -21;
Δ = b2-4ac
Δ = 152-4·3·(-21)
Δ = 477
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{477}=\sqrt{9*53}=\sqrt{9}*\sqrt{53}=3\sqrt{53}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{53}}{2*3}=\frac{-15-3\sqrt{53}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{53}}{2*3}=\frac{-15+3\sqrt{53}}{6} $
| |x=3|=4x-7 | | 23x+2-256=0 | | 4-3s=s-8 | | -7.5x+10=15x-20 | | (2x+13)+(x+13)-(6x)=8 | | 7(6+y)=28 | | 16x-21=252 | | 30+7x+4=180 | | 2(a)+12(a)=10 | | 3n-3=12(n=6 | | 8x+11=4x+19 | | 3(4a+1)=9a-7 | | 3x+4+x=112 | | 9=10(8x+9) | | 12-5x=-2-5x | | 8n+6=8 | | √25*x^2=100 | | x÷3.2-8=6 | | 5(5x+3)=x-2 | | 6x+12=x-18 | | 3k²-3k-36=0 | | 4(3x-13)=1 | | (2x+13)+(x+13)-(6x+13)=8 | | 11+x=x | | 1000x=10x | | 350/x=0.428816 | | 39-x=26 | | 1.2=x+3/x+1 | | 2x²-8x-32=0 | | (10^(x/6))(10^(x/8))=10 | | 56-x=47 | | (10^x/6)(10^x/8)=10 |