If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+15x=0
a = 3; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·3·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*3}=\frac{-30}{6} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*3}=\frac{0}{6} =0 $
| 6(2)=2x+4 | | 5(3x-1=) | | 4m+1=8 | | 2+x/3=8 | | x4-7x2+12=0 | | (x+1)^2-12(x+1)+32=0 | | 2(11-2x=) | | 3(x-8)=6(x-4) | | 6x-2x+8=x+1 | | x^2+3x+1054=0 | | X-1/2=-x-2/3 | | -w=-10+4 | | -6x+-3-4=-3x+-5-2 | | 6(-2)=2x+4 | | 5/2x+3/5=3/10 | | 5-3k=-k-3k | | -3b(2b-7)=-3b+21-3b | | 17b–11b=18 | | b=7= | | x−8=9/x | | 6-4b=b+ | | 49x^2+9=70x | | x−8=9x | | (n+1/3)=3/2n+1+1/2n-1/3 | | 2n+17+4n+31=180 | | 2/5c-1/3=5/3 | | W=4x+5 | | 2/5c-1/2=5/3 | | 14x+15x-6+1=7x+1-6 | | -10=2/7x+10 | | 2n+14+4n+31=180 | | 10=16-x |