If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+15x=3
We move all terms to the left:
3x^2+15x-(3)=0
a = 3; b = 15; c = -3;
Δ = b2-4ac
Δ = 152-4·3·(-3)
Δ = 261
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{261}=\sqrt{9*29}=\sqrt{9}*\sqrt{29}=3\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{29}}{2*3}=\frac{-15-3\sqrt{29}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{29}}{2*3}=\frac{-15+3\sqrt{29}}{6} $
| Y(y)+2y-3=0 | | -7/3r-2=2 | | 36-v=5v | | 35+6u=13u | | 2g−g=19 | | x-7=1-2 | | -13r+-4r+-14=20 | | 2x^2-4x^2+x-2=0 | | 14r+-12r+-18=-2 | | 8y−6y=18 | | 0.6-0.48=0.03x+0.48-0.48 | | 5(z+1)=4(z-6)+2 | | 3−m=-5 | | 5r7=38 | | p-27/7=10 | | t/7+47=56 | | 6r-(-14)=50 | | 14x+7=54.6 | | c/4+(-19)=-13 | | 2(x-9)=-6 | | 6(p+75)=-24 | | 12x+18x=x+5 | | 7x+89=117 | | c/3-4=4 | | y^+2y-3=0 | | y=8-(3) | | 6=z-31/8 | | g/8-95=(-90) | | Y2+2y-3=0 | | 7.5x-5.7x= | | 7f-(-23)=65 | | 2x/2+1=11 |