If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+16x-35=0
a = 3; b = 16; c = -35;
Δ = b2-4ac
Δ = 162-4·3·(-35)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-26}{2*3}=\frac{-42}{6} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+26}{2*3}=\frac{10}{6} =1+2/3 $
| x(x+8)=14+3 | | -120x-300=100x | | 34.8m=278.4 | | 3z^2=4 | | 1/4z-2/7=3/4 | | 5x-3/4=5x+3/10 | | 1/4z-2/7=-3/4 | | 210=-7(5+7x) | | 6(8+h)=48 | | y/4=y-6 | | 4x-4x+8=-8 | | -(a-10)=6 | | 4=7(p-3) | | 6+z*5=26 | | 44=4(x+8) | | 44=4(x+8 | | 100x=-120x+300 | | -8=n/17 | | 4x/5-x=x/10-9/2. | | 5=+2x10 | | 5x−1=2x+6 | | 3-(2x-6)=6x-15 | | 15=7c+3-5c | | 3-2x/2x+5=-3/11 | | 84=6(p+7) | | 1.8x20=x | | 7/40÷x=10 | | 1.25x+2=0 | | X2+5x=24 | | 29=-8n-3 | | -49+n=-51 | | 9x+7.09=6x+13 |