If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+18x+20=0
a = 3; b = 18; c = +20;
Δ = b2-4ac
Δ = 182-4·3·20
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{21}}{2*3}=\frac{-18-2\sqrt{21}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{21}}{2*3}=\frac{-18+2\sqrt{21}}{6} $
| 7×2x=29 | | a/2-1=1 | | 11=14-3c | | k+28/8=-2 | | j-18=15 | | 2(x-2)+3(x+1)=-(x-3) | | 12(w-2)=5 | | 9s-4s+2s=7 | | 24−4(w+1)=−24 | | 6=4y+-6 | | q-96/2=1 | | 9z=810 | | X2+5x-14=26 | | 11-5m=-29 | | 19y+2y-11y+2y-2y=20 | | 15+2j=-5 | | h+3=68 | | 12(5+2y=4y-6+9y | | b/2+8=9 | | k÷5=4 | | h-+3=68 | | 28x^2(4-x)=27 | | .5x+.7=2.7 | | 5(y+10)+6=1 | | .85x(75+X)=125 | | 11r-7r=8 | | k/3+11=15 | | x+3=1.5^x | | 1 +a=45 | | -2x+7+9=21 | | (3x+13)-(x+16)=3x-20 | | r/30=29 |