If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+18x=24
We move all terms to the left:
3x^2+18x-(24)=0
a = 3; b = 18; c = -24;
Δ = b2-4ac
Δ = 182-4·3·(-24)
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-6\sqrt{17}}{2*3}=\frac{-18-6\sqrt{17}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+6\sqrt{17}}{2*3}=\frac{-18+6\sqrt{17}}{6} $
| y+2=5y-2 | | (2r-5)(r-5)=0 | | Y=x3-2x+3 | | 15/x=0.230769231 | | (1.23^x)-0.137=0 | | z/12=45 | | 10/x=0.043 | | 1.8-3.7x=-4.2x-+0.3 | | 2y-21=4y+5 | | 1/2x+3=2/3x1 | | 2x+3x+5x+90=180 | | x+1/x+1=5/3 | | (x/2)+10=x-20 | | 9x-24=x-56 | | 6x-8=7x-16 | | y+2(4-y)=6-(4y-12) | | –|x|=9 | | -4(b+8)=-60 | | 3x-24=3(x-2) | | x2-6=43 | | 4f-3=5 | | 4x−25=10 | | -1/5x+15=0 | | 12-1/5x=-3 | | 16-6x=3x-2 | | (10x-3)(3x+1)=6x | | 2x^2-3=4x+3 | | (10x-3)(3x+1)=0 | | 10x-3)(3x+1)=0 | | -6x-2(x-4)=-56 | | 10x+3–6x–17=6x+15 | | 2z+8/3=1/4+5 |