If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+20x+7=0
a = 3; b = 20; c = +7;
Δ = b2-4ac
Δ = 202-4·3·7
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{79}}{2*3}=\frac{-20-2\sqrt{79}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{79}}{2*3}=\frac{-20+2\sqrt{79}}{6} $
| x+1+2x-17+89+x=180 | | 32c+12=−66c−16 | | 19-8c=-11c-2+9 | | 2+2q=-2 | | h3+11=14 | | 13x=553 | | x(x-4)+3x=30 | | 4x-5+90=180 | | s6+26=36 | | s6+ 26=36 | | b=360-137-97-101 | | (-8f)*(-f+8)=0 | | 2u-u+3=15 | | 2(3x+4)-3x=3(x+8) | | 4(n+1)-3=13 | | -1/3x+5=-2+5/7x | | 198=97+x | | 90=(7+2x)+(4x) | | (-s-5)+(-2s+2)=0 | | -10=-9z+10 | | 19-8c=11c-2+9 | | -10=-9z+1= | | x÷-1/6=21 | | 43=w/4+14 | | 234=97+a | | 3(4w+3)=-4 | | 2X+14x-16=3x+40 | | 5(1+k)=-9k+6 | | 9*k=6*k-7 | | -10-6k=-2k-18 | | 24=-11y-8-3y | | (12y+12)=180 |