If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+23x=0
a = 3; b = 23; c = 0;
Δ = b2-4ac
Δ = 232-4·3·0
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-23}{2*3}=\frac{-46}{6} =-7+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+23}{2*3}=\frac{0}{6} =0 $
| 7x-1=+5 | | -x2+4=200 | | 5r+20-r-3=5 | | 3/4x+16=1/8x+2 | | 18/g-11=9(-2+1/g)+8 | | 7(c+1)=6+6c | | (-1/6d=-4 | | 2×-5=4x-1 | | x+(3x-5)=75 | | 7y-3=5-3y | | 5-x/3=30 | | x+x+(x/6)+(x/6)=1 | | x+28=-58 | | 2k^2=10 | | 4k-40=-14k+14 | | 5x+1-x=7+3x-1 | | 3-y/2+2y=71 | | 518+49x=784+101x | | 5x+2=3x= | | x^2=16+(x-4/x+4) | | 5x-3(x-4)=-9+5x+12 | | 4(5x+2)=20 | | -n-23=5-3n | | 31=5-6x+8-x | | (2x+6)=(9x-4) | | s/4=21 | | -n-5=10-4n | | 8x-2=12/x | | 8x+1=5+4x | | 2•3.14•r=40 | | 15r^2+34r-16=0 | | x^2=(16+(x-4)/(x+4)) |