If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+24x+15=0
a = 3; b = 24; c = +15;
Δ = b2-4ac
Δ = 242-4·3·15
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-6\sqrt{11}}{2*3}=\frac{-24-6\sqrt{11}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+6\sqrt{11}}{2*3}=\frac{-24+6\sqrt{11}}{6} $
| 2(2x-2)=3x+25 | | -12f+16=7-12f | | 6x-9x-13=-3x+5-13 | | -5/6=w-2 | | 6/7(6d-18)-23=19 | | 24x-18/6-x=-12 | | 7x+3x+10=-2(9x+3) | | (4x)(240)=x | | 8-15b=-7b-8b+8 | | 36x^2-108x+81= | | -12x+4x+3=75 | | 7x+7x+x-355-5=-5(x+12) | | X+40=180-y | | -8u+16=6u-26 | | (4x+3)=79 | | 8(y+4)=72 | | -3-x=-2x+5 | | y=-5-4-1 | | 2+9w=13w-12w-14 | | -3x+-5=3x+7 | | y=-5+2-1 | | 3w+6=-3w-18 | | -12w=-60 | | 4n+3=10n+ | | 0.8(6d-18)-23=19 | | 9=-8-11v | | 2x+4=-(-7x+5) | | 7x+3x+10=-2(6x+8) | | -13+-6x=-23+-1x | | 14t-17=-17+14t | | t+5-6t=2+4t-1 | | 6v+30=8v+46 |