If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-10=0
a = 3; b = 2; c = -10;
Δ = b2-4ac
Δ = 22-4·3·(-10)
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{31}}{2*3}=\frac{-2-2\sqrt{31}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{31}}{2*3}=\frac{-2+2\sqrt{31}}{6} $
| 13.46+16.7y=14.9y-18.4 | | -7.1b+10.08=-7.8b | | 5f-20=8f+19 | | -14z+17=-13z | | 46=24-3(2-5w) | | 8x+16x-22x=-7+11 | | (3x+1)^2-(2x-1)^2=75 | | -7(x-6)-3=4(x+7) | | 2/7y+5=-9 | | 27y+5=-9 | | 6.5x+2.5=74 | | 4p+24=1.6p+12 | | 10(x-8)-8=16x-118 | | 006x-0.18=0.12 | | 5(4y+22)=185 | | -3.1071=(x-69)/2.8 | | -4(x-9)+9x=6(x-3)+8 | | 3x-2x+4=40 | | 7x^2+4x=75 | | -3(x-1)+6=8(x-2) | | 15x-52=98 | | 3(e+9)=39 | | 15x-52=180 | | 3x^2-8-19=0 | | 15x-52=82 | | -3(x-1)+6=8(x—2) | | -6p-4=-2(-3p+2) | | 2x+15+4x=645 | | 2b2-b2=100 | | -6+2h=-4 | | 4x^2+2(x+5)=0 | | –x–20=–12 |