If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-21=0
a = 3; b = 2; c = -21;
Δ = b2-4ac
Δ = 22-4·3·(-21)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-16}{2*3}=\frac{-18}{6} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+16}{2*3}=\frac{14}{6} =2+1/3 $
| 3x²+2x-21=0 | | 3x-7=11+7x | | 16=l/11 | | c+9=19 | | 0.1x-49=90 | | 67=4h | | b-12=-14 | | a/2-11=3 | | -1/3-1/2w=-2/7 | | 4-10n=126 | | x5/8=26 | | -9/8w+1/2=-9/4 | | 3x+3=-3*5 | | -4w/7=20 | | X/6xX/4=2 | | 5/2w=-25 | | -2/5x+3/8=1/2 | | 2.5(12.75x+24.50)=188.65 | | 44=11k | | 2x+8+3x-16=12 | | 50x=24 | | -5.7=x×3 | | 25=9x+4 | | 5(x-6)=2x-3 | | 3x–4=1–2x | | 4u+2-5(-2u-1)=2(u-1) | | (2x-9)=(x+39) | | 8j=36 | | 40+4x(x+20)=180 | | -3(3y-5)+7y=9+4(4y-2) | | 84=n/4 | | 3(v+4)=-2(7v-3)+3v |