If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-48=0
a = 3; b = 2; c = -48;
Δ = b2-4ac
Δ = 22-4·3·(-48)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{145}}{2*3}=\frac{-2-2\sqrt{145}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{145}}{2*3}=\frac{-2+2\sqrt{145}}{6} $
| (3x+9)+81=360 | | 9e+90+5e+6=180 | | 1/5(-25-15x)=5-3x | | 300-5x=10 | | -31+52x^2-1=0 | | 1/4=x^2/360 | | 3x+9+81+x=360 | | 2a+6(1-5a)=118 | | 4(2+x)=(x-3)5 | | (4x100,000)+(7x1,000)+(8x100)+(6x1=) | | 3x+9+81+x=2360 | | =18(.07)t | | =5(1.08)t | | (2x*3x)=62 | | 5=05n | | 16x+8+80+x=360 | | 81/v=3 | | 7x7+10=S | | 7(6x+3)-9=42x+12) | | 7(4-3x)=2(8x-9)6 | | 4x+8.46=2x+15.62 | | =4(0.8)t | | 4x+36+5x+24+x=180 | | 8.6x+4.4-11=5; | | w/4-10=3 | | 9k+6+4k+5=108 | | 6(2u+3)=3(2/3u+1) | | x*2-4x-4=0 | | .75(x-8)=51 | | 3x+10=-8x-1 | | 10(p-2)=5(p+3) | | 18=−7x+12 |