If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-5=0
a = 3; b = 2; c = -5;
Δ = b2-4ac
Δ = 22-4·3·(-5)
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-8}{2*3}=\frac{-10}{6} =-1+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+8}{2*3}=\frac{6}{6} =1 $
| 2÷5x-4=8-3÷5x | | 7/8x-1/2=3/16x=5 | | x2+12x+36=75 | | 45+9/4r=-45 | | m+17=2.8 | | 12=3(d+6) | | x2-18x+81=24 | | Y-x+5=20-4x | | g+12=64 | | 7(2x-4)+2=3x+7+11x | | -1+2-x=x-8+(-x)= | | 5x2+245=5 | | 5+2(x-4)=4x+7= | | P(x)=3+14 | | 16/17=x/100 | | 2x^-12x=-18 | | 4h+3h=10 | | 3=15q+18 | | a(8a-a)=15 | | x^+4x=-3 | | -5p=-11-6p | | -y=-y+8 | | .8x=100 | | 8(a+8)=15 | | z+9z=20 | | 2(6x+2)=2x-16 | | Y=6y=49 | | x^2=32+1/2x | | 18=-5b-18 | | -3(3n+6)=-6n+6 | | -3(-3x-5)=15 | | -5x+6-6(x-1)=-(4x-3)-6x+6 |