If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-90=0
a = 3; b = 2; c = -90;
Δ = b2-4ac
Δ = 22-4·3·(-90)
Δ = 1084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1084}=\sqrt{4*271}=\sqrt{4}*\sqrt{271}=2\sqrt{271}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{271}}{2*3}=\frac{-2-2\sqrt{271}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{271}}{2*3}=\frac{-2+2\sqrt{271}}{6} $
| E(x)=59 | | (2+q)=15 | | 2x–6=4–3x | | 3x+x=355 | | -0.5(x+9)=-6.5 | | -8x2.3=8x-12.1 | | 35=7(x-3) | | 1.50x+12=1.80x+6 | | .80*x=3 | | -1=-4+b÷6 | | −27≤−6x+3= | | −r−10r= | | 924+8b= | | n−10+9n−3= | | Z-13z=0 | | 23+7=(1-5x) | | 4(x=1)+8=24 | | 80+(3x)=180 | | k−9.93/2=3.09 | | 9=(-3f-8) | | 30x30= | | x2–10x+7=0 | | (3x-16)+(2x)=104 | | .04v2+.5v-60=0 | | (5x+17)+(3x-15)=90 | | 49.4+0.35x=60 | | 23(5x+12) −7=56 | | X-10+4x+20=180 | | f–4+11=10 | | f–4+ 11=10 | | 17=n3+15 | | 17=n3+ 15 |