If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+30x-90000=0
a = 3; b = 30; c = -90000;
Δ = b2-4ac
Δ = 302-4·3·(-90000)
Δ = 1080900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1080900}=\sqrt{900*1201}=\sqrt{900}*\sqrt{1201}=30\sqrt{1201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-30\sqrt{1201}}{2*3}=\frac{-30-30\sqrt{1201}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+30\sqrt{1201}}{2*3}=\frac{-30+30\sqrt{1201}}{6} $
| (5)(x)=44=2 | | (5)/(x)=44=2 | | .12b+.10(4b+1)=2.18 | | -3(5+6n)=33-6n | | 30.16=17.6+5x | | 2p+6-10=12 | | 7(2x-4)=1 | | x^2+4=x^2+25 | | 6x+6x=10x-30 | | 2x-x^2=60 | | 3x+2x+2x=264 | | H=80+-16t | | 22.00+24.50x=47.00+8.25 | | 11x-2=19x+3=9x+1 | | x+10=x+2=9x+8 | | -2/3+1/2w=-1/5 | | 9x-8=1x+10=1x+2 | | 3n^2+9=-6 | | 1/2=10/n | | -7(-3u+2)-4u=5(u-2)-6 | | 2/n=4/16 | | y–(-18)=14+11 | | -8t^2+5t+15=0 | | 5v–9=8v–3 | | 6x+518x=7 | | X4+4x3+11x2+14x-30=0 | | 1/2(2x+10)=6x+2-2x0/5 | | 100+.40x=200 | | 0.5=y | | .05=y | | (x+2)^2+(2x-1)^2=9^2 | | 4.0.75n+100=0.25n-1 |